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Can the Higgs be a composite resonance?

e A composite resonance is a natural mechanism, as e.g. in superconductivity
e Avoids fine-tuning of the scalar mass
e Likely requires a “walking” theory near a conformal infrared fixed point (IRFP)

— Light Higgs could be the dilaton of broken conformal symmetry
— Walking coupling leads to enhanced chiral condensate needed for precision EW constraints

e Strongly coupled model requires non-perturbative studies

— exploratory lattice results [1]
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— still in chirally broken phase = 20
e Does such a model with integer flavor number exist? 15
— Even if so, hard to study with typical lattice methods 10 ]
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Alternative model: 4+8 flavors N

e Study SU(3) with N; + Nj, flavors
— N; massless (light) flavors
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— N}, heavy flavors of mass my,

e [nfrared: system is chirally broken for amjy = O(1) (4 light flavors);
system is chirally symmetric for amy, — 0 (12 light flavors) [2,3]

e Tuning mass my, allows interpolation between chirally symmetric and broken phases

The phase diagram
N1
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Bulk IRFP B

e Renormalized trajectory (RT) emerges from the IRFP of 12-flavor system (mj, = 0)
— runs to the trivial § = 0 point at mjp = oo
e For amj, < 1 the RG flow lines approach this IRFP
— hover around it, then run to trivial F'P along the renormalized trajectory
e [f original gauge coupling is close to RT, IR behavior of the system is characterized by my,
— investigate the system as a function of m;, with fixed S

e At finite temperature the chiral condensate (1)1)); serves as order parameter

Numerical setup

e nHYP smeared staggered fermions, fundamental-adjoint gauge action |4]

e Code based on FUEL [5]

Anomalous Dimension from the mode number
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e Large anomalous dimension with walking coupling leads to enhancement of the condensate, important
for phenomenological applications
e The scale dependent anomalous dimension can be determined from the mode number [2]

— Ny =4: 7.4 = 0 in the UV (perturbative), increases to v = O(1) when chiral symmetry breaks
— Ny =4+ 8! 7. 18 large in the investigated energy range
— As my, — 0 Yo — 7 (= 0.28) before chiral symmetry breaking sets in

Determination of the running coupling using Wilson tlow

e Fixtrapolate Wilson flow data to the chiral limit

e Define an improved renormalized coupling using the the gradient flow [6,3]
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e The t-shift in (E(t + 7p)) reduces the O(a?) cut-off errors of § gG (1)

e Determine Wilson flow scale tg for shifted data: t>(E(t + 7)) = 0.3
t=t,

e Optimize 7 by requiring consistency of gz F(t) near t &~ ty between different m,
(talk by A. Hasenfratz Wednesday, 9:00am)
— Control finite volume effects by restricting v/8t/a < 0.2L, L = 32
— Control cut-off effects by restricting v/8t/a > 2 (indicated by solid lines)
(Data at 8 = 4.0 on 32° x 64 lattices)
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e In the infrared this yields agreement of gz F(,u, my,) for all my,

Running coupling for different masses mj,
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e Plot géF vs. 1/ o = +/8lp/V/8t and normalize z-axis by ¢y = 1/+/8t0|m,=0.060
e Dashed lines indicate v/8t < 2 (cut-off effects)
e Statistical errors are smaller or comparable to the line width
e We show am;, = 0.060, 0.080, and 0.100
— amy, = 0o (N = 4): QCD-like running coupling
— amy, = 0.100 shows very little “walking” (almost QCD-like)

— amy, = 0.080 shows the emergence of “walking”
— amy, = 0.060 and below has extended “walking” range

e Tuning my, controls the energy dependence of the gauge coupling

Summary and outlook

o The Ny =4+ 8 flavor system allows controlled study of the emergence of the conformal window
e ['irst results are promising and follow expectations:

— The coupling shows signs of “walking” as mj;, — 0
— The anomalous dimension is large across a wide energy range
— The 07 scalar M, decreases as mj, — 0 (talk by E. Weinberg Monday, 5:30pm)

e The 4 + 8 flavor system presents new challenges:

— The phase diagram is complicated and the continuum limit requires mjy — 0 in addition to f — o
— Heavy and light flavors mix, complicating spectrum studies

e Future plans:

— Numerical exploration of the finite temperature phase diagram
— Study of the fermion condensate and the ratio ¥/ f
— Spectrum studies, including the disconnected scalar, with smaller my,, larger volumes
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